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Abstract. The condition for a double-well potential V=-oxi' + b P t 2  (3 = I ,  2 . 3 , .  . . ) to 
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number of negative levels is determined. Same general features of the spectrum are pointed 
out. The results are based an a sequence of exactly obtainable zero energy solutions. 
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This work is based on the observation that for any member of the family of double 
well potentials 

(1) V =  - a X 2 r  + b X 4 r + 2  

with a, b > 0 and s a positive integer, the single particle Schrodinger equation admits 
a sequence of zero energy solutions. In such cases the problem transforms into one of 
solving a two-term recursion relation whose admissible solutions require a suitable 
fine tuning of the coupling constants a and b. As a result one obtains a set of weighted 
polynomial solutions whose nodal characteristics determine the onset of the negative 
branch. One can, thereby, also determine the exact number of negative energy levels 
for arbitrary values of a, b and s. Some additional characteristics of the negative branch 
of the spectrum can also be deduced. 

The Schrodinger equation of interest is 

Primes denote derivatives with respect to x. Using dimensionless variables correspond- 
ing to the x2' piece we can rewrite (2) as 

+"+[E+y2'-pZy47+2]+ = o  
We have set W ( x ) - + ( y ) ,  x = n y ,  

Letting 

4 = u exp( --I BY2s+z' 
2s+2 

we find for the function u ( y ) ,  the equation 

u " - 2 p y ~ ' + ' u ' + [ &  +y2' (1-  p ( z s +  1) ) lu  = 0. 
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For U,  we introduce a power series expansion 

For even parity solutions a, f 0, a, = 0 and for odd parity solutions a, = 0, a,  # 0. 
The coefficients a-, = 0, m = 1,2,3, . . . . Finally, we arrive at the three-term recursion 
relation 

(n +2s + 2)( n + 2s + l)a,+2,+2+ + [I - p(2n + 2s+ l)]a, = 0. (7) 

Let us seek solutions of (7) with E =O.  We thus have the problem of a two-term 
recursion relation, so that 

p (2n+2s+ l ) -  1 
( n  +2s +2)( n +2s  + 1) 

a . ( E = O ) .  a.+2.+2 = 

For arbitrary p the resulting solution is inadmissible since 4 diverges as 
e ~ p [ p ( y ~ " ~ ~ ) / ( Z s + 2 ) ] .  But for 

1 
'=2k+2s+ 1 (9) 

where 

the function U reduces to a polynomial of degree k If ( loa)  holds, one has an even 
panty solution and if ( lob) holds one has an odd parity solution. The coefficients in 
the expansion are given by 

2(n-k)  
( n  +2s+2)( n +2s+  1)(2k+2s+ 1) '"' an+2*+2= 

Thus, we have a manifestly normalizable E = 0 solution for which v is a polynomial 
of degree k provided p is chosen as per (9) and k as per ( loa)  or (lob). 

Let us consider the case p = 0. Then k = 0 or k = 1. For k = 0, E = 0, U = constant, 
4 is nodeless and p = 1/(2s + 1). It follows immediately that there can be no negative 
energy level for p 3 I/(2s + 1) .  We are using an elementary quantum mechanical result 
that if H = H ( g ) ,  g = p', then J&/Jg = ( d H / J g ) .  In our case ( J H / d g )  is clearly positive. 
For k = l ,  E = O ,  U-x, 4 h a s o n e n o d e a n d p = l / ( 2 ~ + 3 ) .  H e n c e , f o r l / ( 2 ~ + 3 ) S p <  
1/(2s + 1) there is one and only one negative energy level. This is, of course, the ground 
state. 

Next consider the p = 1 case. We have k = 2s +2  for the even solution and k = 2s + 3 
for the odd solution. These solutions have two and three nodes respectively and 
p = 1/(6s+5) for the even case and p = 1/(6s+7),for the odd case. Hence for 1/(6s+ 
5 )  S p  < l / (2s+3)  one has one pair ofnegative levels and for 1 / ( 6 s +  7 ) S p  < 1/(6s+5) 
there are three negative levels. 

The wavefunctions for the p = 1 case are easily written down using (1 1). They have 

U - (1  + axzs+2) 

v-x(l+bx2'+2) odd. 

even 

The coefficients a and b are given by (11). 



Letter to the Editor L271 

Proceeding in this manner one easily finds that the number of negative levels is 
( 2 p + l )  as soon as k increases through the value given by (loa). There is no further 
increase until the k value passes that given by ( lob ) .  Here, we think of k as a continuous 
real variable that determines p through (9). 

This completes the demonstration of our claim that the exact zero energy solutions 
that obtain for a discrete set of p values uniquely specify the number of negative levels 
for any p. 

We now come to some other features of the spectrum suggested by this analysis. 
It has been noted that a negative branch appears only if p < l / ( 2 s + l ) .  For 

p = 1/ (2s+l )  the depth of the well is ( (~+1) / (2s+l ) ) [ s (2~+1)]”‘”+’) .  It follows that 
if s >> 1,  the well depth has to be larger than -s2 for the onset of the negative branch. 
Hence, for large s the well has to be extremely deep for a negative level to appear. 
The coupling constant 0’ of the binding potential has to be vanishingly small for large 
s ( p 2 s  l/s2) for a negative branch to be realized. 

It is amusing to note that for any double well of this family the special set of 
coupling constant values p2 that give rise to the sequence of zero energy levels form 
a Rydherg-like progression. 

Next, as k increases (s fixed) to values >>I,  the special values of p given by (9) 
beyond which new negative levels appear form a quasi-discrete set. Hence, infinitesimal 
changes in p allow more and more levels to cross into the negative branch. But in 
such a case the geometry of the well changes very little. For example, there is only a 
small fractional change in the depth of the well as p moves to the next permissible 
value. Hence, qualitatively, one does not expect the levels that existed immediately 
below E = O  to move very much. It thus appears that the levels below E = O  and close 
to it form a converging pattern when followed from down to up towards E =0, for the 
case of deep wells (k  >> 1). 

As a matter of fact, for the case of the sextic double-well potential discussed in 
[ I ]  that corresponds to s = 1, such a convergence of levels is verifiable by a direct 
calculation. In this double-well case it is known that for p = 1/(2k + 3), the Hamiltonian 
develops an intimate connection with an underlying SL(2, R )  symmetry [2]. Con- 
sequently, for k = 2m or k = 2m + 1, m = 0,1,2,. . . , there appear m + 1 exact solutions 
that correspond to the lowest lying ( m  + 1) levels of one parity. This set of ( m  + 1) 
levels can be deduced by elementary means (see [l]  for details). One then finds that 
for k>> 1, as we follow the levels of one parity from below towards e=O, they do  
indeed from a converging pattern. This convergence does not appear to be as pro- 
nounced as a Rydberg progression of levels. It may be remarked that a convergent 
pattern of levels for certain double wells has been suggested on the basis of supersym- 
metric quantum mechanics [3]. 

To conclude, it is worth stressing that one witnesses here a further utility of the 
subset of partial solutions that obtain for fine-tuned values of certain associated 
coupling constants. They have enabled us to deduce some spectral features of a whole 
class of potentials for the case of arbitrary couplings. 
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